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The Digital Elliptic Filter—A Compact Sharp-
Cutoff Design for Wide Bandstop or
Bandpass Requirements

M. C. HORTON, MEMBER, IEEE, AND R. J. WENZEL, MEMBER, IEEE

Abstract--Detailed design procedures are presented for a practical
elliptic-function filter form capable of achieving high selectivity in a very
compact configuration. This filter form, called the digital elliptic because
of its digital construction and elliptic function response, can provide
either bandpass or bandstop characteristics. Examples are given to illus-
trate typical design procedures for both bandpass and bandstop applica-
tions. Experimental results are presented for an octave bandstop design.

INTRODUCTION

ECENTLY, the application of modern network tech-
R niques to distributed lines [1]-[5] has permitted the
exact design of microwave TEM filters by using
methods employed in the exact synthesis of lumped element
filters. The relationship between a lumped element prototype
filter and its distributed element counterpart is accomplished
by employing Richards’ [6] tangent transformation (1). Us-
ing this transform, a shorted quarter-wavelength stub is
represented as an inductor L and an open stub is represented
as a capacitor C, The “unit element,” a quarter-wavelength
of line, can also be represented and used in the theory but
it has no lumped element counterpart.

Several previous papers have covered in detail the design
of distributed filters having equal-ripple response, or maxi-
mally flat response, in the passband only [1]-[5]. Such
lumped element filter prototypes are usually referred to as
Chebyshev or Butterworth, respectively. A lumped element
prototype which has sharper cutoff characteristics for a
given number of sections is the well-known Cauer param-
eter or elliptic-function filter which exhibits equal-ripple
response in both passband and stopband. Tables of element
values are available for the simple design of such lumped ele-
ment filters. This paper presents a simple exact design pro-
cedure for the construction of an elliptic-function distributed-
line filter using the available tables. The procedure is a spe-
cific application of the general theory presented in a previous
paper [7]. Because of the finger-like appearance of the
structure, the new filter has been termed the digital elliptic.
For wide bandwidth designs (greater than 30 percent), either
distributed bandpass or bandstop, the digital elliptic filter is
an extremely compact microwave structure for attaining
sharp cutoff characteristics.
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The remainder of this paper presents the simple design
procedure used in converting from the lumped element low-
pass (or high-pass) prototype to the distributed element
bandstop (or bandpass) realization, and gives example de-
signs for both bandstop and bandpass filters. Test results
are presented for an experimental model of an octave band-
stop design. The paper concludes with a summary of the
practical advantages and limitations of the digital elliptic
filter.

DESIGN PROCEDURE

The low-pass and high-pass lumped element prototypes
of an elliptic-function filter are shown in Fig. 1(a) and (b),
respectively. Parallel resonant tank circuits in the series
branches create transmission zeros, or attenuation peaks,
in the stopband of each prototype at finite frequencies as
shown in the response characteristics. The approximation
problem for filters of this type which give equal-ripple re-
sponse in both passband and stopband has been solved and
the synthesis of appropriate clement values may be found in
published tables [8]-[11]. Also presented in these tables are
the finite frequencies of zero transmission and the ratio of
cutoff frequencies between regions of high and low trans-
mission.

Conversion from the lumped element frequency variable
Q to the distributed element frequency variable w=2xf is
accomplished through Richards’ transformation,

mww
Q = tan — = tan — (1)

where wo=2xf, is the frequency for which all distributed
TEM lines are one quarter-wave in length. This transforma-
tion involves only a ratio of distributed frequencies, i.e.,
w/wo=f/fo. Since most desired response characteristics are
specified in terms of f rather than w, the subsequent design
of digital elliptic filters, including characteristics and equa-
tions, will be given in terms of f. The entire positive frequency
range in © is mapped by the transformation into the positive
range in f from zero to f,. Because of the repetitive nature of
the tangent function, the response characteristic then repeats
on an interval of 2fy producing response “windows” as
shown in Fig. 2(a) and (b).

Physically, the conversion using (1) implies that each
inductor in the prototype be replaced by a shorted quarter-
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Fig. 1. Elliptic function prototype filter networks and attenuation
characteristics: (a) prototype low-pass, and (b) prototype high-pass.
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Fig. 2. Digital elliptic microwave filter configurations and responses
for (a) distributed bandstop designs, and (b) distributed bandpass
designs.
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Fig. 3. Parallel conductor distributed representations of transformed
lumped element prototype networks: (a) capacitive, and (b) induc-
tive.

wave stub of normalized characteristic impedance given by
the inductive prototype value, and that each capacitor be
replaced by an open quarter-wave stub of normalized char-
acteristic admittance given by the capacitive prototype
value. Concentrating first on the low-pass prototype of Fig.
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1(a), it has been pointed out [12]-[14] that the capacitive
portion of this network is the lumped element representation
of a parallel array of quarter-wavelength conductors above
a ground plane, one conductor representing each ungrounded
node in the prototype, as shown for a three-node network
in Fig. 3(a). Further, all lumped element capacitance values,
e.g., C in Fig. 3(a), are proportional to the respective “static
capacitance” values ¢ of the distributed line' such that
c=(n/v'&)C, where n=376.7/Z, for a filter terminated in Z,
ohms and e, is the relative dielectric constant of the medium.
Again, glancing at Fig. 1(a), the inductances bridging each
node and in series with the output port can be represented
in the distributed parallel line system of Fig. 3(a) by incor-
porating shorted coaxial stubs within each line and attaching
each stub center conductor to the next adjacent parallel line,
as shown in the digital elliptic bandstop configuration of
Fig. 2(a). The repetitious response of this filter with fre-
quency f is the same as the prototype network response
mapped by (1). ‘

In similar manner, the inductive portion of the high-pass
prototype network of Fig. 1(b) is represented in distributed
form by a parallel array of conductors shorted at the far
end as in Fig. 3(b). All distributed “static capacitance”
values ¢ are now related to the respective prototype induc-
tance values Lyp by the proportional relation c=(n/ve,)
Ly~ The bridging series capacitors are incorporated in-
ternally within the parallel conductors as open stubs. The
resulting configuration and response of the digital elliptic
bandpass filter is given in Fig. 2(b).

A. Prototype L-P (Microwave Bandstop)

The procedure for obtaining bandstop digital elliptic
filter dimensions will be described briefly. Convenient
charts [15]-[16] are used to design the prototype capacitive
portion, i.e., the parallel conductor array. The bandwidth-
normalized values of self and mutual “static capacitance”
required for use with the referenced charts are obtained by
multiplying the low-pass prototype capacitance values C
by (n/v/<), thus

376.7 o
Zoe

The characteristic impedances of the shorted series stubs

are given in terms of the low-pass prototype inductance
values L by

Cehart =

(2)

'\/-E_r— Zseries stub = \/;: ZOL; (3)

and physical dimensions can be obtained from nomographs
[17].

! Note that ¢ as defined here is dimensionless, and is actually the
ratio of static capacitance between conductors per unit length to the
dielectric constant of the medium (this ratio is independent of the
dielectric medium and depends only on cross-sectional geometry) [13].
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B. Profotype H-P (Microwave Bandpass)

The normalized self and mutual static capacitance values
for the prototype inductive portion of the bandpass digital
elliptic filter are obtained by dividing n/+/¢, by the high-pass
prototype inductance values Lyp to give

376.7 87 @
Cehart = Hp -,
0\/5r
and the characteristic impedances of the series open stubs
are given in terms of the high-pass prototype capacitance
values Cpp by

Ve Z L (5)

All dimensions are obtained as in the L-P prototype by using
the referenced charts and nomographs.

series stub = \/Er ZOCHP_

C. Bandwidth Scaling

The tables of prototype elliptic-function filter element
values given in Saal and Ulbrich [8], and Saal [9] are nor-
malized to a cutoff frequency of unity, Q,=1. Therefore,
when a digital elliptic filter is constructed as described above,
it will provide a stop or pass bandwidth of 100 percent
(3 to 1) centered about the quarter-wave frequency fo.
Frequency scaling to other than 100 percent bandwidth can
be achieved by dividing all prototype element values in (2)-
(5) by a scaling constant 2./, which may be either greater or
less than unity. This is equivalent to changing to a new
bandwidth-scaled frequency variable €' given by

wf’
Q =0,/Q = tan — - (6)
2fo
Values of Q> 1 give rise to a reduced bandwidth in the case
of either a bandstop or bandpass filter, and ©,’<1 corre-
sponds to increased bandwidth.? The scaling constant, from
(1), is given by

7rf cll
an PP
f cl "l’ f c2
where [’ is the lower, and f., is the higher desired bandedge

cutoff frequency for either bandstop or bandpass digital
elliptic filters. The resulting percentage bandwidth is given

by [3]:

% BW = 200 <1 _ 2 o 9’)
™
The elliptic-function filter tables of Saal and Ulbrich 8]
and Saal [9] list only low-pass prototype element values,
C and L. The normalized-bandwidth high-pass prototype
values, Lyp=C~! and Cyp=L™, are reciprocals of the low-
pass prototype values. Thus the normalized-bandwidth high-
pass prototype equations (4) and (5) become identical to

2 In all cases, percentage bandwidth (;BW) is bandwidth about f;

and may be either a stopband or passband.
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those for the low-pass prototype equations (2) and (3). When
bandwidth scaling is performed, the factor Q. defined before,
divides the low-pass prototype element values of (2) and (3)
in a low-pass prototype design, and multiplies them in a
high-pass prototype design.

The complete set of design equations for digital elliptic
filters is given in Table I for handy reference. Equations are
included for calculating bandwidth scaling factor Q./, and
bandwidth-normalized prototype skirt selectivity factor Q..
The selectivity factor symbol (£,), the low-pass capacitance
and inductance symbols (C and L), and the maximum pass-
band attenuation (4p), and minimum stopband attenuation
(4,) symbols used in Table I are identical to those used in
the tables of Saal and Ulbrich [8], and Saal [9].

DEeSIGN EXAMPLES
A. Example 1: Octave Bandstop Design

Assume that a bandstop filter is to be designed to meet
the following specifications:

a) Passband cutoff frequencies of f,;'=1.0 GHz, f.,’=2.0
GHz.

b) Passband VSWR<1.6:1.

¢) Attenuation (4;) to be >30 dB for 1.050 GHz< f’

<1.950 GHz; therefore f,'=1.05 GHz.
Referring to Table I, from (T-1),

7l'fc1, ™ —
Q) = tan— - = tan — = /3, M
fcl +fc2 3
and from (T-3),
fan —
o+ fo tan 0.35
Q, — el g _ ARTOOT a8, ®)
Q. V3

Note from specification c) and (8) that the tangent trans-
formation increases the skirt selectivity factor of the dis-
tributed network relative to that of the lumped element pro-
totype. A selectivity factor of 1.13 for the lumped element
prototype corresponds to a selectivity factor of 1.05 for the
distributed filter.

From the tables of Saal [9], a filter-type numbered
C-06-20c, with modular angle 8=66°, provides the following
characteristics which somewhat exceed the given specifica-
tions:

Maximum passband reflection coefficient |p| =0.20
(VSWR,,.x=1.5:1).

Skirt selectivity factor Q,=1.124.

Minimum stopband attenuation 4,=31.5 dB.

Frequencies of zero transmission Q,=1.143; Q.=1.405;

Q.= 0,

The prototype circuit is shown in Fig. 4(a). From (6)
normalized bandwidth-scaled real frequencies (f’/fo)=(2/)
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TABLE 1
DEsiGN EQUATIONS FOR DIGITAL ELLIPTIC FILTERS
Prototype Low-Pass Microwave Bandstop Prototype High-Pass Microwave Bandpass
A A
K] W Ag W
Ap Ap
0 fafs o fe2 f 0 f; f;] fs ‘;:2 §
’ !
Q. = tan W;;l = tan Fﬂ-f_’c_l—f/ (T-1)
Bandwidth Scaling Factor, Q. ’ 9 vel o
% BW — 200(1 — 2 tan sz) (T-2)
™
fs
Q) tan 2f Q. Q.

Skirt Selectivity Factor, Q== (T3 ©=—t=— . (T-4)

Qc, Qc, Qs Tfs

tan
2fo
376.7 C 376.7
Parallel Conductor Array Cobart = " 7= 0 (T-5) Cohart = Ve, ca’ (T-6)
. . L — -

Internal Series Stubs Ve Zer stab = Ver Zo Y (T-7) Ver Zeer. stub = V'er ZoL& (T-8)

Ap = maximum passband attenuation level in dB.

As = Minimum stopband attenuation level in dB.

f’ = Lower-edge frequency for which the attenuation is Asg.

fea' = Lower-edge passband cutoff {frequency.
Je2' = Higher-edge passband cutoff frequency. :
fo = (fa' + fed') /2 = frequency for which the lines are quarter-wavelength.
Q, = Skirt selectivity parameter listed in Saal and Ulbrich [8] and Saal [9].
L, C' = Low-pass prototype element values listed in Saal and Ulbrich [8] and Saa] [9].

Zy

= Characteristic terminating impedance (ohms).

¢ = Relative dielectric constant of medium.
Cohars = “Static eapacitance” to be found in charts [15], [16].
Ver Zser stup = Characteristic impedance to be found in chart [17].

tan~' Q,’Q corresponding to important response points are
given by

fcl, 2 —

7 = —tan—!4/3 (1) = 0.667
o T

2 ~

i = —tan~! /3 (1.124) = 0.698
0 T

I 2 _

T = tan—1 /3 (1.143) = 0.703
0 T

&2 —

f— = —tan"t+/3 (1405) = 0.752
[} T

I

2
= —tan—! © = 1.000.
fo T

The octave bandwidth theoretical response characteristic is
shown in Fig. 4(b). The actual distributed filter selectivity
factor is

£, 0.698

- = = 1.045.
fa!  0.667

)

For a 50-ohm realization, the self and mutual static
capacitance values are obtained by direct substitution in
(T-5) and the series stub impedance values likewise from
(T-7). The appropriate static capacitance network is shown
in Fig. 4(c), along with the stub impedance values. To en-
able the practical construction of the series stubs, a dielectric
constant larger than that used for the coupled lines is desir-
able. With air-loaded coupled lines, Teflon (+/e,= 1.44) pro-
vides a convenient dielectric,
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Fig. 4. Octave bandstop digital elliptic design. (a) Low-pass proto-
type element values. (b) Theoretical response characteristic.
(c) Static capacitance values and series stub impedances.

Dimensions for the coupled-line portion of the filter are
determined as for interdigital filters as described by Matthaei
[18]. Thus, for a rectangular bar realization, (si.1)/b is
determined directly from Fig. 3 of Getsinger [15] using
Crm(k k+1)s and

? = —2— 1-— ?> l:; Cst — (Cr)k—1,k — (Cfe)k,k+1:| (10)

is computed using the referenced charts, In the previous
calculations

b=ground plane spacing,
t=line thickness,
Sk,x11=Spacing between lines k and k+1,
w=width of the kth line,
csr=self capacitance of the kth line,
Cm ke 1y =mutual capacitance between lines k and k41,
(¢r rp1=even-mode fringing capacitance between lines
k and k41 as determined from Fig. 3 of
Getsinger [15].

Note that as s/b—, the corresponding ¢;-—¢; where ¢; is
the fringing capacitance of an isolated line (Fig. 5 of Getsinger
[15]). Thus for an N-line network

T R
— =1 =) = —¢— (e
b2 b/l T

311

and

o %(1 - %) & v o] an

Using the preceding equations, line dimensions for the
bandstop filter of Fig. 4 were determined. The effect of the side
walls was taken into account by using c¢y¢(s,/b) in place of ¢
for the end lines as shown in Fig. 6 of Getsinger [15], where
$./2 is the spacing between the end lines and the walls. A
line drawing showing cross-sectional dimensions for »=0.500
inch and r=0.200 inch is given in Fig. 5(a). The diameter
ratios for the series stubs were determined from the refer-

enced nomograph [17]. Note that each wy/b should satisfy
the inequality

(12)

as discussed by Getsinger [15]. If this is not satisfied (as was
the case with the first line in the above example), the correc-
tion formula [15]

007(1 t>+w'°
wy’ ' b b

b 12 (13)

can be used providing 0.1<(w;’/6)/[1—(t/b)] <0.35.

Using the cross-sectional dimensions of Fig. 5(a), an
experimental model was constructed using quarter-wave-
length lines at 1.5 GHz. Assembly sketches of the filter
structure are shown in Fig. 5(b) and (c). Several junctions
were mitered to reduce discontinuity effects. Line spacings
were maintained by use of Teflon fiberglasss pacers as shown.
Movable shorting slugs were provided to allow adjustment
of the series stub lengths.

The measured response of the filter is shown in Fig. 6, and
a photograph of the experimental model is shown in Fig. 7.
The experimental results shown were obtained with no
physical alterations other than adjustment of the series
shorting slugs and matching of the connectors. The dielectric
spacers provided a high degree of mechanical stability and
did not appear to affect the electrical response. Junction
effects and the nonzero width of the structure did not in-
fluence significantly the electrical performance.

B. Example I1: Wide Bandpass Design (Pseudo High Pass)

Assume a wide bandpass filter is to be designed to satisfy
the following specifications:

a) Passband cutoff frequencies f,/'=1.0 GHz, f./’=4.0
GHz.

b) Passband VSWR less than 1.5:1.

c) Attenuation (4,) to be >50 dB for f/'<0.95 GHz
(f/=0.95 GHz).
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Fig. 5. Construction details of octave bandwidth digital elliptic
filter. (a) Cross section. (b) Perspective view. (c) Plan view.

From Table I, (T-1),

2./ = tan -’; —0.727 (14)
and from (T-4),
Q. 0.727
s = = = 1.07. (15)
x(0.950) 0.680

tan ————

From Saal’s tables [9] a filter-type numbered C-09-15, with
modular angle 6=70°, provides the following satisfactory
characteristics:

Maximum passband reflection coefficient |p| =0.15
(VSWR,,.x=1.36:1).
Skirt selectivity factor Q,=1.064.
Minimum stopband attenuation 4,=51.0 dB.
Frequencies of zero transmission ;= 1.302, Qs=1.069,
Q=1.119, Q,=2.094,

Q= 0,
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Fig. 6. Octave band digital elliptic measured response.

Fig. 7. Experimental octave bandstop digital elliptic filter.

The low-pass prototype element values are shown in Fig.
8(a). The high-pass response characteristics are obtained by
substituting 1/© for © as in the usual low-pass to high-pass
transformation [19]. Therefore,

0, = 1.0, 8, = 0.940, 05 = 0.768, 8 = 0.936,
04 = 0.895, 0, = 0.478, 8., = 0.

Bandwidth-scaled distributed network frequencies, corre-
sponding to important response points, are obtained by
applying (6) and using the high-pass barred frequencies
given by

g

I = —tan1 Q..

fo =
With f,=2.5"GHz, the theoretical response characteristic is
that shown in Fig. 8(b). The actual distributed filter selectiv-
ity factor is f,/7,/ = 1.047. Note that in this example, because
the tangent function is more nearly linear for small angles,
the difference between the lumped element prototype selec-
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Fig. 8. Wide bandpass digital elliptic design. (a) Low-pass prototype.
(b) Theoretical response characteristic. (c) Static capacitance values
and series stub impedances.
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b=.500, += .300
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Fig. 9. Sample cross-sectional dimensions for wide bandpass design.

tivity factor and the distributed filter selectivity factor is very
slight.

For a 50-ohm realization, the self and mutual static
capacitance values are obtained by substitution of the low-
pass prototype element values in (T-6) and the series stub
impedance values are obtained likewise from (T-8). The
appropriate static capacitance network and stub impedance
values are shown in Fig. 8(c). Dimensions for the coupled-
line portion of the filter are obtained by use of (10) through
(13) of Example I, and the stub impedances are obtained
from the referenced nomograph [17]. A line drawing showing
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computed cross-sectional dimensions for 5=0.500 inch and
t=0.300 inch is shown in Fig. 9. The final realization takes
the form shown in Fig. 2(b).

CONCLUSIONS

The digital elliptic distributed TEM filter is an extremely
compact microwave structure capable of very sharp cutoff
response in wideband applications throughout the fre-
quency range up to X-band. The filter is finger-like in ap-
pearance, and realizes equal-ripple response in both pass-
band and stopband as do elliptic-function lumped element
filters; thus the name digital elliptic. The practical advan-
tages and limitations of the digital elliptic filter are listed
below.

Advantages

1) Existing tables [8]-[11] may be used to obtain proto-
type inductance and capacitance element values, thus
circumventing tedious approximation and synthesis
procedures.

2) The digital elliptic filter can be realized in a physical
form identical to its lumped element prototype; thus
no redundant elements nor equivalent circuit trans-
formations are necessary.

3) Bandwidth scaling is accomplished by applying a multi-
plying factor to the tabulated element values; this
simple recipe cannot be used in the exact design of most
wideband microwave filters which employ quarter-
wavelength elements.

4) The physical form is extremely compact, e.g., it is often
four or five times smaller than an interdigital band-
pass filter of comparable selectivity. It is also much
more compact than other microwave realizations for
elliptic-function response [7], [20].

5) The same design procedure holds equally well for
either bandstop or bandpass designs, and the filter
structural form is identical.

6) The digital elliptic filter has been found to give mea-
sured performance close to theoretical with relatively
few adjustments.

Limitations

1) The structure is inherently wideband (>30 percent)
and is not suited to narrowband designs due to physical
limitations.

2) The structure requires series internal stubs and there-
fore more machined parts than some filter forms,

3) At X-band frequencies and above, practical ground
plane spacings will result in junction effects which are
difficult to compensate.

The practical design procedure for digital elliptic filters is
extremely simple. All necessary equations are listed for
handy reference in Table I. Two design examples, a band-
stop and a bandpass, are given to demonstrate each step in
the design. '
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On the Mode Correspondence Between Circular
and Square Multimode Tapered Waveguides

CHARLES C. H. TANG

Abstract—In an axially straight multimode circular waveguide taper
excited with a pure TES dominant mode, the first and only converted
mode at and near cutoff is the TMQ mode. It is shown that in an axially
straight multimode square waveguide taper excited with a pure TEX
dominant mode, the TMY] mode corresponding to the TMS mode in
circular case is not the only first converted mode at and near cutoff.

The overall behavior or coupling mechanism of waveguides is similar
whether the waveguide is rectangular, square, circular, or elliptical: i.e.,
the overall coupling coefficient at cutoff of a converted mode or modes
approaches an infinity of the order 014,
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case of two-mode weak coupling the coefficient of
coupling between the TE$, dominant mode and the
TM{, mode in tapered circular waveguides tends to approach
an infinity of the order 0~/ at cutoff frequency whereas the
corresponding coefficient of coupling between the TEY
dominant mode and the TMZ mode in tapered square wave-
guides approaches instead a zero of the order 0V at cutoff
frequency. No convincing physical interpretation was given
for such surprisingly drastically different coupling behaviors
at cutoff frequency. It is the attempt of this paper to offer a
convincing explanation.
For modes adjacent to the dominant mode, the mode cor-
respondence between circular and square waveguides can be
easily identified. As the mode order goes higher the identi-

I[N A PREVIOUS PAPER! it was shown that for the



