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.4bsfracf-Detaikd design procedures are presented for a practical

elliptic-function tilter form capable of achieving high selectivity in a very

compact configuration. This filter form, called the digital elliptic because

of its digital construction and elliptic function response, can provide

either bandpass or bandstop characteristics. Examples are given to ilhls-

trate typical design procedures for both bandpass and bandstop applica-

tions. Experimented reardts are presented for an octave bandstop design.

INTRODUCTION

ECENTLY, the application of modern network tech-

R
niques to distributed lines [1 ]–[5] has permitted the

exact design of microwave TEM filters by using

methods employed in the exact synthesis of lumped element

filters. The relationship between a lumped element prototype

filter and its distributed element counterpart is accomplished

by employing Richards’ [6] tangent transformation (1). Us-

ing this transform, a shorted quarter-wavelength stub is

represented as an inductor L and an open stub is represented

as a capacitor C, The “unit element,” a quarter-wavelength

of line, can also be represented and used in the theory but

it has no lumped element counterpart.

Several previous papers have covered in detail the design

of distributed filters having equal-ripple response, or maxi-

mally flat response, in the passband only [1 ]–[5]. Such

lumped element filter prototypes are usually referred to as

Chebyshev or Butterworth, respectively. A lumped element

prototype which has sharper cutoff characteristics for a

given number of sections is the well-known Cauer param-

eter or elliptic-function filter which exhibits equal-ripple

response in both passband and stopband. Tables of element

values are available for the simple design of such lumped ele-

ment filters. This paper presents a simple exact design pro-

cedure for the construction of an elliptic-function distributed-

line filter using the available tables. The procedure is a spe-

cific application of the general theory presented in a previous

paper [7]. Because of the finger-like appearance of the

structure, the new filter has been termed the digital elliptic.

For wide bandwidth designs (greater than 30 percent), either

distributed bandpass or bandstop, the digital elliptic filter is

an extremely compact microwave structure for attaining

sharp cutoff characteristics.
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The remainder of this paper presents the simple design

procedure used in converting from the lumped element low-

pass (or high-pass) prototype to the distributed element

bandstop (or bandpass) realization, and gives example de-

signs for both bandstop and bandpass filters. Test results

are presented for an experimental model of an octave band-

stop design. The paper concludes with a summary of the

practical advantages and limitations of the digital elliptic

filter.

DESIGN PROCEDURE

The low-pass and high-pass lumped element prototypes

of an elliptic-function filter are shown in Fig. l(a) and (b),

respectively. Parallel resonant tank circuits in the series

branches create transmission zeros, or attenuation peaks,

in the stopband of each prototype at finite frequencies as

shown in the response characteristics. The approximation

problem for filters of this type which give equal-ripple re-

sponse in both passband and stopband has been solved and

the synthesis of appropriate element values may be found in

published tables [8]–[1 1]. Also presented in these tables are

the finite frequencies of zero transmission and the ratio of

cutoff frequencies between regions of high and low trans-

mission.

Conversion from the lumped element frequency variable

Q to the distributed element frequency variable a= 27Y is

accomplished through Richards’ transformation,

d
fl=tan~=tan ———

2fo
(1)

where CJO= 2mfo is the frequency for which all distributed

TEM lines are one quarter-wave in length. This transforma-

tion involves only a ratio of distributed frequencies, i.e.,

u/aO =f/fo. Since most desired response characteristics are

specified in terms off rather than w, the subsequent design

of digital elliptic filters, including characteristics and equa-

tions, will be given in terms off. The entire positive frequency

range in Q is mapped by the transformation into the positive

range in f from zero to fo. Because of the repetitive nature of

the tangent function, the response characteristic then repeats

on an interval of 2fo producing response “windows” as

shown in Fig. 2(a) and (b).

Physically, the conversion using (1) implies that each

inductor in the prototype be replaced by a shorted quarter-
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(b)

Fig. 1. Elliptic function prototype filter networks and attenuation
characteristics: (a) prototype low-pass, and (b) prototype high-pass.
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Fig. 2. Digital elliptic microwave filter configurations and responses
for (a) distributed bandstop designs, and (b) distributed bandpass
designs.
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Fig. 3. Parallel conductor distributed representations of transformed
lumped element prototype networks: (a) capacitive, and (b) induc-
tive.

wave stub of normalized characteristic impedance given by

the inductive prototype value, and that each capacitor be

replaced by an open quarter-wave stub of normalized char-

acteristic admittance given by the capacitive prototype

value. Concentrating first on the low-pass prototype of Fig.

l(a), it has been pointed out [12]–[14] that the capacitive

portion of this network is the lumped element representation

of a parallel array of quarter-wavelength conductors above

a ground plane, one conductor representing each ungrounded

node in the prototype, as shown for a three-node network

in Fig. 3(a). Further, all lumped element capacitance values,

e.g., C in Fig. 3(a), are proportional to the respective “static

capacitance” values c of the distributed linel such that

c= (~/~~)C, where v = 376.7/20 for a filter terminated in 20

ohms and ~r is the relative dielectric constant of the medium.

Again, glancing at Fig. l(a), the inductances bridging each

node and in series with the output port can be represented

in the distributed parallel line system of Fig. 3(a) by incor-

porating shorted coaxial stubs within each line and attaching

each stub center conductor to the next adjacent parallel line,

as shown in the digital elliptic bandstop configuration of

Fig. 2(a). The repetitious response of this filter with fre-

quency f is the same as the prototype network response

mapped by (1).

In similar manner, the inductive portion of the high-pass

prototype network of Fig. l(b) is represented in distributed

form by a parallel array of conductors shorted at the far

end as in Fig, 3(b). All distributed “static capacitance”

values c are now related to the respective prototype induc-

tance values LHP by the proportional relation c= (v/@

LHP-l. The bridging series capacitors are incorporated in-

ternally within the parallel conductors as open stubs. The

resulting configuration and response of the digital elliptic

bandpass filter is given in Fig. 2(b),

A. Prototype L-P (Microwave Bandstop)

The procedure for obtaining bandstop digital elliptic

filter dimensions will be described briefly. Convenient

charts [ 15]–[ 16] are used to design the prototype capacitive

portion, i.e., the parallel conductor array. The bandwidth-

normalized values of self and mutual “static capacitance”

required for use with the referenced charts are obtained by

multiplying the low-pass prototype capacitance values c

by (q/~~), thus

376.7
c~h.~t = - c.

Zl)<e,
(2)

The characteristic impedances of the shorted series stubs

are given in terms of the low-pass prototype inductance
values L by

v’; .zseriesstub= w/z zoL, (3)

and physical dimensions can be obtained from nomography

[17].

1Note that c as defined here is dimensionless, and is actually the
ratio of static capacitance between conductors per unit length to the
dielectric constant of the medium (this ratio is independent of the
dielectric medium and depends only on cross-sectional geometry) [13].
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B. Prototype H-P (Microwave Bandpass)

The normalized self and mutual static capacitance values

for the prototype inductive portion of the bandpass digital

elliptic filter are obtained by dividing ~/&. by the high-pass

prototype inductance values LHP to give

.

376.7
cchar~= XL.,-’, (4)

and the characteristic impedances of the series open stubs

are given in terms of the high-pass prototype capacitance

values CHP by

.
All dimensions are obtained as in the L-P prototype by using

the referenced charts and nomography.

C. Bandwidth Scaling

The tables of prototype elliptic-function filter element

. values given in Saal and Ulbrich [8], and Saal [9] are nor-

malized to a cutoff frequency of unity, Q.= 1. Therefore,

when a digital elliptic filter is constructed as described above,

it will provide a stop or pass bandwidth of 100 percent

(3 to 1) centered about the quarter-wave frequency ~,.

Frequency scaling to other than 100 percent bandwidth can

be achieved by dividing all prototype element values in (2)-

(5) by a scaling constant W’, which may be either greater or

less than unity. This is equivalent to changing to a new

bandwidth-scaled frequency variable Q’ given by

fl’=fl~fl=t an<.
2fll

(6)

Values of Q; >1 give rise to a reduced bandwidth in the case

of either a bandstop or bandpass filter, and %’< 1 corre-

sponds to increased bandwidth.2 The scaling constant, from

(l), is given by

7rfcl’ d cl’
Q: = tan — = tan

2fll fcl’ + fc2’‘

wheref.~ is the lower, andf,~ is the higher desired bandedge

cutoff frequency for either bandstop or bandpass digital

elliptic filters. The resulting percentage bandwidth is given

by [3]:

( )~oBW = 200 1 – ~ tan-] L?: .
n-

The elliptic-function filter tables of Saal and Ulbrich [8]

and Saal [9] list only low-pass prototype element values,

C and L. The normalized-bandwidth high-pass prototype

values, LHP = & and CHP = L–l, are reciprocals of the 10W-
pass prototype values. Thus the normalized-bandwidth high-

pass prototype equations (4) and (5) become identical to

2 In all cases, percentage bandwidth ( ~BW) is bandwidth about fo
and may be either a stopband or passband.

those for the low-pass prototype equations (2) and (3). When

bandwidth scaling is performed, the factor Q: defined before,

divides the low-pass prototype element values of (2) and (3)

in a low-pass prototype design, and multiplies them in a

high-pass prototype design.

The complete set of design equations for digital elliptic

filters is given in Table 1 for handy reference. Equations are

included for calculating bandwidth scaling factor Q.’, and

bandwidth-normalized prototype skirt selectivity factor Q,.

The selectivity factor symbol (Q,), the low-pass capacitance

and inductance symbols (C and L), and the maximum pass-

band attenuation (AD), and minimum stopband attenuation

(A,) symbols used in Table I are identical to those used in

the tables of Saal and Ulbrich [8], and Saal [9].

DESIGN EXAMPLES

A. Example I: Octave Bandstop Design

Assume that a bandstop filter is to be designed to meet

the following specifications:

a) Passband cutoff frequencies of fcl’ = 1.0 GHz, f.z’ = 2.0

GHz.

b) Passband VSWRS 1.6:1.

c) Attenuation (AJ to be >30 dB for 1.050 GHz< f’

~ 1.950 GHz; therefore f,’= 1.05 GHz.

Referring to Table I, from (T-l),

dcl’
Q,’ = tan ———— =

fcl’ + fcs’
tan ~ z 43, (7)

and from (T-3),

~f 8’
tan

fcl’ + fc2’ tan 0.357
Q. = = 1.13. (8)

Q: – 43

Note from specification c) and (8) that the tangent trans-

formation increases the skirt selectivity factor of the dis-

tributed network relative to that of the lumped element pro-

totype. A selectivity factor of 1.13 for the lumped element

prototype corresponds to a selectivity factor of 1.05 for the

distributed filter.

From the tables of Saal [9], a filter-type numbered

C-06-20C, with modular angle e= 66°, provides the following

characteristics which somewhat exceed the given specifica-

tions:

Maximum passband reflection coefficient I PI =0.20

(VSWRrnax= 1.5: 1).

Skirt selectivity factor Q,= 1.124.

Minimum stopband attenuation A.= 31.5 dB.
Frequencies of zero transmission Q,= 1.143; Q,= 1.405;

Q.= m.

The prototype circuit is shown in Fig. 4(a). From (6)

normalized bandwidth-scaled real frequencies (f ‘/fo) = (2/T)
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TABLE I

DF.SIGNEQUATIONSFORDIGITAL ELLIPTIC FILTERS

Bandwidth Scaling Factor, Q,’

Skirt Selectivity Factor, Q,

Parallel Conductor Array

Internal Series Stubs

Prototype Low-Pass Microwave Bandstop

A

As.

AD.

Prototype High-Pass Microwave Bandpass

A

As

DYQll_

Uu

AD

o f;f; l fo f;z f’

dcl’
— = tan

~fcl’

‘: = ‘an 2f0 :.1’ + fc2’
(T-1)

(% BW = 200 1 – ~ tan-’ Q’
)

(T-2)
T

~fs’tan —

fl,=~;= 2f0 (T-3)
c O.’

W’Q=:fi= (T-4)
.9 ~fs’tan —

2fo

376.7 C

Cch”rt = d;zo a?
(T-5)

376.7
— co;

C“h”rt = <;Z,
(T-6)

AD = maximum passband attenuation level in dB.

As = Minimum stopband attenuation level in dB.

f; = Lower-edge frequency for which the attenuation is As.

f.t = Lower-edge passband cutoff frequency.

.f,z’ = Higher-edge passband cutoff frequency.

fo = (f.,’ + ~oz’)/2 = frequency for which the lines are quarter-wavelength. ~

Q, = Skirt selectivity parameter listed in Saal and Ulbrich [8] and Saal [9].

L, C = Low-pass prototype element values listed in Saal and Ulbrich [8] and Saal [9].

Z, = Characteristic terminating impedance (ohms).

e, = Relative dielectric constant of medium.

%hnrt= “static capacitance” to be found in charts [15], [16].

-&Z~, .*., = Characteristic impedance to be found in chart [17].

tan–l QO’Qcorresponding to important response points are

given by

fcl’ 2 -
~ = ~ tan-’ <3 (1) = 0.667

f:
~ tan-l {~ (1.124) = 0.698

X=T

fz’
~ tan-l @ (1.143) = 0.703

X=r

f:
— – ~ tan-’ ~s (1.405) = 0.752
fo–?r

fOJ’ 2—=. tan–l ~ = 1.000.
fo ~

The octave bandwidth theoretical response characteristic is

shown in Fig. 4(b). The actual distributed filter selectivity

factor is

f: _ 0.698 ~ 045
.— .

fcl’ 0.667 “ “
(9)

For a 50-ohm realization, the self and mutual static

capacitance values are obtained by direct substitution in

(T-5) and the series stub impedance values likewise from

(T-7). The appropriate static capacitance network is shown

in Fig. 4(c), along with the stub impedance values. To en-

able the practical construction of the series stubs, a dielectric

constant larger than that used for the coupled lines is desir-

able. With air-loaded coupled lines, Teflon (~~= 1.44) pro-

vides a convenient dielectric.
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(c)

Fig. 4. Octave bandstop digital elliptic design. (a) Low-pass proto-
type element values. (b) Theoretical response characteristic.
(c) Static capacitance values and series stub impedances.

Dimensions for the coupled-line portion of the filter are

determined as for interdigital filters as described by Matthaei

[18]. Thus, for a rectangular bar realization, (s, ,W,)/b is

determined directly from Fig. 3 of Getsinger [15] using

Cm(h ,k+l), and

?=+3[+ C,k — (cfe)k_l,k— (Cj.)k,k+l
1

(lo)

is computed using the referenced charts. In the previous

calculations

b= ground plane spacing,

t= line thickness,

sk,~hl= spacing between lines k and k+ 1,

tt)b = width of the kth line,

c.~= self capacitance of the kth line,

c~(~,k+l) = mutual capacitance between lines k and k+ 1,
(c, & ,~+1= even-mode fringing capacitance between lines

k and k+ 1 as determined from Fig. 3 of

Getsinger [15].

Note that as s/b+ co, the corresponding cj,-wf where Cf is

the fringing capacitance of an isolated line (Fig. 5 of Getsinger

[15]). Thus for an N-line network

%=% -3 HC’-(C’J1’1

and

?=+(l-+)[5:-(cfe)N-lN-c’l “1)

Using the preceding equations, line dimensions for the

bandstop filter of Fig. 4 were determined. The effect of the side

walls was taken into account by using cfo(su/b) in place of Cf

for the end lines as shown in Fig. 6 of Getsinger [15], where

sJ2 is the spacing between the end lines and the walls. A

line drawing showing cross-sectional dimensions for b= 0.500

inch and t= 0.200 inch is given in Fig. 5(a). The diameter

ratios for the series stubs were determined from the refer-

enced nomograph [17]. Note that each wk/b should satisfy

the inequality

Wk
—

b
<0.35 (12)

t
1 ——

b

as discussed by Getsinger [15]. If this is not satisfied (as was

the case with the first line in the above example), the correc-

tion formula [15]

()0.07 1–; +;
Whl
—.

b 1.2
(13)

can be used providing 0.1 <(wk’/b)/[l –(t/b)] <0.35.

Using the cross-sectional dimensions of Fig. 5(a), an

experimental model was constructed using quarter-wave-

length lines at 1.5 GHz. Assembly sketches of the filter

structure are shown in Fig. 5(b) and (c). Several junctions

were mitered to reduce discontinuity effects. Line spacings

were maintained by use of Teflon fiberglass pacers as shown.

Movable shorting slugs were provided to allow adjustment

of the series stub lengths.

The measured response of the filter is shown in Fig. 6, and

a photograph of th~ experimental model is shown ii Fig. 7.

The experimental results shown were obtained with no

physical alterations other than adjustment of the series

shorting slugs and matching of the connectors. The dielectric

spacers provided a high degree of mechanical stability and

did not appear to affect the electrical response. Junction

effects and the nonzero width of the structure did not in-

fluence significantly the electrical performance.

B. Example II: Wide Bandpass Design (Pseudo High Pass)

Assume a wide bandpass filter is to be designed to satisfy

the following specifications:

a) Passband cutoff frequencies ~.1’ = 1.0 GHz, ~,z’ = 4.0

GHz.

b) Passband VSWR less than 1.5:1.

c) Attenuation (A.) to be z 50 dB for ~ S 0.95 GHz
&;=O.95 GHz).
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Fig. 6. Octave band digital elliptic measured response,

(c)

Fig. 5. Construction details of octave bandwidth digital elliptic
filter. (a) Cross section. (b) Perspective view. (c) Plan view.

Fig. 7. Experimental octave bandstop digital elliptic filter,

From Table I, (T-l),

L’ = tan $ = 0.727 (14)

and from (T-4),

w’ 0.727
Q, = = — = 1.07. (15)

7r(o.950) 0.680
tan ——

5

From Saal’s tables [9] a filter-type numbered C-09-15, with

modular angle O= 70°, provides the following satisfactory

characteristics:

The low-pass prototype element values are shown in Fig.

8(a). The high-pass response characteristics are obtained by

substituting l/~ for Q as in the usual low-pass to high-pass

transformation [19]. Therefore,

~c = 1.0, ~~ = 0.940, !& = 0.768, ~G = 0.936,

Q, = 0.895, !32 = 0.478, ~m = O.

Bandwidth-scaled distributed network frequencies, corre-

sponding to important response points, are obtained by

applying (6) and using the high-pass barred frequencies

given by

71 9
Maximum passband reflection coefficient I p I = 0.15

J
z E tan–l QLQ.

(VSWR~ax= 1.36: 1). Xr

Skirt selectivity factor Q.= 1.064. With ~.= 2.5 GHz, the theoretical response characteristic is
Minimum stopband attenuation A.= 51.0 dB. that shown in Fig. 8(b). The actual distributed filter selectiv-
Frequencies of zero transmission $2S= 1.302, Q,= 1.069, ity factor is ~C/~8’= 1.047. Note that in this example, because

Q,= 1.119, Q,=2.094, the tangent function is more nearly linear for small angles,
L&=ce. the difference between the lumped element prototype selec-
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Fig. 8. Wide bandpass digital elliptic design. (a) Low-pass prototype.
(b) Theoretical response characteristic. (c) Static capacitance values
and series stub impedances.

I I

E
DIMENSIONS(INCHES)

b = ,500, ~= ,3OO

S, = .237 w, = 085 bl/q = 2,95

s~ = 050 WI = .269 b2/.2 = 180

Sj = ,033 w~ = .172 b3/.a3= I 56

S4= ,078 Vl~= .228 b.@4 = 2.00

Ifs = 039 WITH&= I 44

(TEFLoN)

Fig. 9. Sample cross-sectional dimensions for wide bandpass design.

tivity factor and the distributed filter selectivity factor is very

slight.

For a 50-ohm realization, the self and mutual static

capacitance values are obtained by substitution of the low-

pass prototype element values in (T-6) and the series stub

impedance values are obtained likewise from (T-8). The

appropriate static capacitance network and stub impedance
values are shown in Fig. 8(c). Dimensions for the coupled-

line portion of the filter are obtained by use of (10) through

(13) of Example I, and the stub impedances are obtained

from the referenced nomograph [17]. A line drawing showing

313

computed cross-sectional dimensions for b= 0.500 inch and

t= 0.300 inch is shown in Fig. 9. The final realization takes

the form shown in Fig. 2(b).

CONCLUSIONS

The digital elliptic distributed TEM filter is an extremely

compact microwave structure capable of very sharp cutoff

response in wideband applications throughout the fre-

quency range up to X-band. The filter is finger-like in ap-

pearance, and realizes equal-ripple response in both pass-

band and stopband as do elliptic-function lumped element

filters; thus the name digital elliptic. The practical advan-

tages and limitations of the digital elliptic filter are listed

below.

Advantages

1)

2)

3)

4)

5)

6)

Existing tables [8]-[11 ] may be used to obtain proto-

type inductance and capacitance element values, thus

circumventing tedious approximation and synthesis

procedures.

The digital elliptic filter can be realized in a physical

form identical to its lumped element prototype; thus

no redundant elements nor equivalent circuit trans-

formations are necessary.

Bandwidth scaling is accomplished by applying a multi-

plying factor to the tabulated element values; this

simple recipe cannot be used in the exact design of most

wideband microwave filters which employ quarter-

wavelength elements.

The physical form is extremely compact, e.g., it is often

four or five times smaller than an interdigital band-

pass filter of comparable selectivity. It is also much

more compact than other microwave realizations for

elliptic-function response [7], [20].

The same design procedure holds equally well for

either bandstop or bandpass designs, and the filter

structural form is identical.

The digital elliptic filter has been found to give mea-

sured performance close to theoretical with relatively

few adjustments.

Limitations

1)

2)

3)

The structure is inherently wideband (> 30 percent)

and is not suited to narrowband designs due to physical

limitations.

The structure requires series internal stubs and there-

fore more machined parts than some filter forms.

At X-band frequencies and above, practical ground

plane spacings will result in junction effects which are

difficult to compensate.

The practical design procedure for digital elliptic filters is
extremely simple. All necessary equations are listed for

handy reference in Table I. Two design examples, a band-

stop and a bandpass, are given to demonstrate each step in

the design.
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On the Mode

and Square

Correspondence Between Circular

Multimode Tapered Waveguides

CHARLES C, H. TANG

Atmfracf—In an axially straight multimode circular wavegoide taper

excited with a pnre TE$/ dominant mode, the first and ordy converted

mode at and near cutoff is the TM~ mode. It is shown that in an axially

straight multimode square wavegoide taper excited with a pare TE~

dornimnt mode, the TM~ mode corresponding to the TM~ mode in

circular case is not the only first converted mode at and near cntoff.

The overall behavior or coupling mechanism of waveguides is similar

whether the waveguide is rectangular, sqnare, circular, or elliptical: i.e.,

the overall coupling coefficient at cutoff of a converted mode or modes

approaches an infhdty of the order ()-1/4.
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I
N A PREVIOUS PAPER1 it was shown that for the

case of two-mode weak coupling the coefficient of

coupling between the TE~ dominant mode and the

TM: mode in tapered circular waveguides tends to approach
an infinity of the order 0–114at cutoff frequency whereas the

corresponding coefficient of coupling between the TEE

dominant mode and the TM~ mode in tapered square wave-

guides approaches instead a zero of the order 01/4 at cutoff

frequency. No convincing physical interpretation was given

for such surprisingly drastically different coupling behaviors

at cutoff frequency. It is the attempt of this paper to offer a

convincing explanation,

For modes adjacent to the dominant mode, the mode cor-

respondence between circular and square waveguides can be

easily identified. As the mode order goes higher the identi-


